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Abstract

In this study of water hammer with fluid–structure interaction (FSI) the main aim was the investigation of junction

coupling effects. Junction coupling effects were studied in various types of discrete points, such as pumps, valves and

branches. The emphasis was placed on an unrestrained pump and branch in the system, and the associated relations

were derived for modelling them. Proposed relations were considered as boundary conditions for the numerical

modelling which was implemented using the finite element method for the structural equations and the method of

characteristics for the hydraulic equations. The results can be used by engineers in finding where junction coupling is

significant.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Transient flow occurs due to a disturbance in the steady flow, such as valve closing or pump shut-down. It can affect

the structural piping system due to interaction between the structure and the contained liquid. In the study of

fluid–structure interaction (FSI) in piping systems, the most significant mechanism is junction coupling, as compared

with the other coupling mechanisms, namely Poisson and friction coupling (Wiggert and Tijsseling, 2001) in the more

flexible piping systems (Heinsbroek and Tijsseling, 1994; Heinsbroek, 1997). Junction coupling takes place at

unsupported discrete points of the piping systems such as unrestrained valves, branches, closed ends, pumps, etc. The

main concept can be numerically implemented by using appropriate boundary conditions which will mutually relate

structural and hydraulic values to each other.

FSI in piping systems, considering the effects of column separation, has already been investigated in by Tijsseling

(1993). In that study, the method of characteristics (MOC) has been used for numerical modelling of both structural

and hydraulic equations. Fan and Tijsseling (1992) have made a study of the simultaneous occurrence of cavitation and

FSI. In this research, numerical simulation and experiment concerned a single pipe, while in Tijsseling et al. (1996), a
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Nomenclature

Ap (Af) cross-sectional area of pipe wall (flow) (m2)

a pressure wave speed (m/s)

D inner diameter of pipe (m)

E Young’s modulus of pipe wall material (Pa)

e pipe wall thickness (m)

f Darcy–Weisbach friction coefficient

G shear modulus of pipe wall material (Pa)

g gravitational acceleration (m/s2)

H piezometric head (m)

I second moment of cross-sectional inertia

(m4)

Ipump inertia of the pump impeller (kg m2)

N rotational speed of pump (rpm)

NR, TR, HR, QR rated quantities of rotational speed,

shaft torque, head and discharge

P fluid pressure (Pa)

Q discharge (m3/s)

T shaft torque of the pump (N m)

V cross-sectional averaged fluid velocity (m/s)

X, Y, Z directions of global coordinate system

x axial direction (x-direction of local coordi-

nate system)

y, z lateral directions (y-, z-direction of local

coordinate system)

a dimensionless rotational speed

b dimensionless shaft torque of the pump

g weight density of fluid (N/m3)

Dt numerical time step, mesh spacing (s)

Dx element length, mesh spacing (m)

Z(w) lateral displacement in xz (xy) plane (m)

y axial rotation of element (rad)

n Poisson’s ratio

x axial displacement (m)

r fluid mass density (kg/m3)

t temporary opening ratio of valve

u dimensionless discharge of pump

8 cavity volume (m3)

Matrices and vectors

C structural damping matrix (kg/s)

D displacement vector of nodes (m)

d(e) displacement vector of element (m)

F load vector in global coordinat system (N)

f
(e) force vector of element (N)

K(e) stiffness element matrix (N/m)

M system mass matrix (kg)

R
(e) transformation matrix of element

S system stiffness matrix (N/m)

Subscripts and superscripts

.(..) first (second) derivative with respect to time

(e) element properties

f fluid

glo global coordinate system

i spatial discretization index

loc local coordinate system

n time discretization index

p pipe, pump

R rated quantities (value of its holder is at the

point of best efficiency)

val valve

x, y, z directions associated with local coordinate

system
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second pipe was added forming a one-elbow system. The other significant work combining FSI and cavitation by Vardy

et al. (1996) concerns a T-piece pipe.

Lavooij and Tijsseling (1991) presented two different procedures for modelling the FSI effects: MOC which is used

for both hydraulic and structural governing equations against MOC–FEM where the hydraulic equations are solved by

the method of characteristics and the structural equations are solved by the finite element method in combination with a

direct time integration scheme. Cases including bends and valves with gradual closure were studied. Furthermore,

Heinsbroek (1997) compared two different ways including MOC and FEM for solving the structural equations.

The contribution of this work was the comparison of Euler–Bernoulli and Timoshenko beam theories when used in the

mentioned ways of solution. This study showed that FSI in pipeline systems can adequately be investigated by

application of MOC and FEM for hydraulics and structure of a piping system, respectively. The preceding solution was

employed to study the coupling mechanisms in branched piping systems (Keramat, 2006). Jazayeri (2004) gave

solutions for hydraulic equations using MOC and structural equations using the control volume method.

In addition to the time-domain analysis such as the present work, many researchers have studied the theoretical and

experimental aspects in the frequency domain (Jong, 1994; Zhang et al., 1999). Li et al. (2003) and Tijsseling (2003) have

independently solved the main axial FSI equations analytically. In both these studies analytical junction and Poisson

coupling modelling has been considered.

An analysis of a two-elbow pipe system done by Moussou et al. (2000) studies perspicuously the effects of junction

coupling. Generally, there are many other experimental and numerical researches which have been carried out for
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junction coupling considerations with elbows (Tijsseling and Heinsbroek, 1999) but only a few works can be found

about investigation of the junction coupling in branched systems.

Here, in the numerical implementation, the junction coupling effect has been taken into account.

The main contribution of the present paper is in the appropriately obtained relations proposed for modelling of

junction coupling for systems including unrestrained pumps, branches, and valves with gradual closure, which can

make its computer implementation convenient and easy. The analysis of junction coupling effects is carried out in three

case studies.
2. Basic concepts

2.1. Assumptions

It is assumed that the piping system consists of thin-walled and linearly elastic pipes for which the conventional

equations can be used without any further correction (Tijsseling, 2007). Besides, the radial inertia and radial shear

deformation of the pipe walls are neglected. The other structural assumptions are that there is no buckling and no large

deformations.

In the hydraulic transient analysis, the simplified set of the equations of motion and continuity have been employed

for the water hammer numerical implementation (Wylie et al., 1993); the unsteady friction models are not considered

here. The discrete vapour cavity model (DVCM) which appears to be simple but adequate can be used to simulate

column separation; the underlying hypothesis is that the flow of liquid in the tube is instantaneously and completely

separated at the computational sections by its vapour phase when a cavity is formed and there are no cavity bubbles in

the regions between the computational sections (Bergant and Simpson, 1999; Bergant et al., 2006).
2.2. Equations

For junction coupling modelling, the hydraulic equations are the formal equations of motion and continuity,

but in the case of Poisson coupling modelling, a term � namely the Poisson coupling term � will be added to

the continuity equation (Lavooij and Tijsseling, 1989). The governing equations, referred to as extended water

hammer, are:

@H

@t
þ

a2

gAf

@Q

@x
�
2a2

g
n _x
0
¼ 0; _x

0
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@2x
@x@t

; ð1Þ
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Q9Q9
2DAf
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In the above equations Q , H and a are discharge, pressure head and wave velocity and D, Af, x and n are the inner
diameter of pipe, cross-sectional flow area, axial pipe displacement and Poisson’s ratio, respectively. The above

equations include the pressure waves with Poisson coupling, which will interact with the axial, lateral and torsional

stress waves which are governed by the following differential equations (Wiggert and Tijsseling, 2001):
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EI
@4w

@x4
þM

@2w

@t2
þMgy ¼ 0: ð5Þ

The variables in the above equations are: fluid pressure, P, cross-sectional averaged fluid velocity, V, axial

displacement, x, angle of twist, y, lateral displacement in the xy plane, w, pipe wall thickness, e, cross-sectional area of

pipe, Ap, mass of pipe per unit length, Mp, total mass per unit length, M, Young’s modulus of elasticity, E, shear

modulus, G, moment of inertia, I, polar second moment of area, J0, components of gravitational acceleration, gx, gy.

It must be noted that Eq. (5) concerns bending vibration in the xy plane and that there is a similar equation for
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vibration in the xz plane, with the lateral displacement Z:

EI
@4Z
@x4
þM

@2Z
@t2
þMgz ¼ 0: ð6Þ

2.3. Junction and Poisson coupling

When a discrete point (junction) has the possibility of moving in the direction of pressure waves, mutual

forces between the fluid and pipe system may cause a dynamic interaction which is known as junction coupling.

A comprehensive discussion of this subject is given in Sections 3.3 and 4.

As indicated, the Poisson coupling term in the continuity Eq. (1) which is dependent on axial pipe displacement on one

hand, and the equation of pipe wall axial vibration (3) which is dependent on contained fluid pressure on the other hand,

gives rise to a coupled analysis with converging values for both structural and hydraulic variables. From a physical point of

view, the Poisson coupling phenomenon is a radial expansion and contraction of the pipe wall, from which axial stress waves

will always be generated. These waves will affect the fluid pressure as the conservation of the mass of liquid (Eq. (1)) shows.

It is obvious that for solely Poisson coupling modelling, only the axial vibration equation (3) must be used in the

coupled analysis procedure and there is no need to consider the other structural equations (4)–(6). Hence, if it is intended

to model the Poisson coupling only, it is necessary to suppress fluid forces which cause lateral and torsional vibrations,

and for this purpose all the discrete points (junctions) of the piping system must be blocked (structurally fixed).

Poisson coupling analysis is implemented herein by making separate subroutines to solve the structural and hydraulic

equations, where the coupled procedure for each time iteration is continued until arriving at converged values for both

structural and hydraulic variables.
3. Solution procedure

In this section the implemented numerical methods and some significant issues to be used for computer programming

will be described.

3.1. Method of characteristics

This method has been used for the numerical implementation of the hydraulic equations (1) and (2). This method

eventually results in a finite differences form which can be written along two characteristic lines indicated as Cþ and

C� (Wylie et al., 1993):

Cþ : Hnþ1
i ¼Cp�BpQnþ1

i

C� : Hnþ1
i ¼Cmþ BmQnþ1

i

) Hnþ1
i ¼

ðCp=BpÞ þ ðCm=BmÞ

ð1=BpÞ þ ð1=BmÞ
; Qnþ1

i ¼
Cp�Cm

Bpþ Bm
;

(
ð7Þ

in which Cp, Cm, Bp and Bm are known constants evaluated from the values obtained in the previous time iteration:
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Note that the subscript i and superscript n indicate spatial and time discretization, respectively. It can be seen that the

only differences in the relations in (8) as compared with the MOC solution of standard water hammer equations are

associated with the Poisson coupling term.

3.2. Finite element method

Using the weighted residual method, in the Galerkin form, the structural equations (3)–(6) can be spatially discretized

separately to make a matrix form of the equations. These matrices, which are in the local coordinate system, can be

combined to make a matrix-form relation for the structural vibrations of the piping system. This matrix-form equation

is written in a global coordinate system using the transformation matrix, which can be obtained in conjunction with the

element position. It is clear that all these operations are associated with one pipe element; by assembling all elements of
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the piping system, a matrix-form equation in the global coordinate system is derived:

M €DþC _DþSD¼ F; ð9Þ

where M, C and S are the general mass matrix, the general damping matrix and the general stiffness matrix of the total

system, respectively; F is the load vector and D is the unknown vector in the global coordinates of the piping system (the

overdot is used for time derivatives). In the present study, in order to analyse Eq. (9) in the time domain, the

Newmark-beta time-integration scheme has been implemented. Also to diminish the artificial numerical oscillations, a

special form of Rayleigh’s damping has been used.

3.3. Coupled analysis procedure

If it is intended to model junction coupling solely, the classical water hammer differential equations will be employed

and the only coupling mechanism will be associated with the boundary conditions in such a manner that, on the one

hand, the hydraulic boundary conditions must be written considering the structural response and, on the other hand,

the structural load vector must be applied considering the fluid pressure. The details of these coupling mechanisms in

the boundary conditions and force vector will be discussed in the subsequent sections.

In the case of both Poisson and junction coupling, the extended water hammer equations accompanied by the

mentioned boundary conditions must be considered. It is clear that if all discrete points (junctions) are structurally

fixed, then no junction coupling will occur. Therefore, with more flexible piping systems, stronger junction coupling

effects will occur.

3.4. Post-processing of the solution

Assume that a structural analysis of the piping system has been done and the D; _D; €D vectors in any time iteration

have been obtained. The members of these three vectors are displacements, velocities and accelerations of nodes in the

generalized coordinate system, respectively. Using these vectors the unknown support reactions, which play the role of

forced boundary conditions, are computed by

Fr ¼ SD: ð10Þ

For calculating the displacements, velocities and accelerations in the global coordinate system for each element, the

inverse operations of those in the assembling procedure should be done, but here the operations are easy. This is

understood by the concept of which element is located between which nodes. From doing this operation on the D; _D; €D
vectors, the vectors d

ðeÞ
glo;

_dðeÞglo;
€dðeÞglo are found for any element. For calculating the displacements, velocities and

accelerations in the local coordinate system for any element, the following relations are used:

d
ðeÞ
loc ¼RðeÞd

ðeÞ
glo;

_dðeÞloc ¼RðeÞ _dðeÞglo;
€dðeÞloc ¼RðeÞ €dðeÞglo; ð11Þ

in which the matrix R(e) is the transformation matrix corresponding to any element. What is obtained from Eq. (11) is

used to evaluate the Poisson coupling term _x
0
in Eqs. (1) and (8). Consider in a 3-D piping system the first and seventh

members that are related to the axial displacements ð _x1 ¼ _d 1; _x2 ¼ _d 7Þ resulting in _x
0
¼ ð _d 7� _d 1Þ=Dx. Finally, the axial

and shear forces and torsion and bending moments are evaluated by

f
ðeÞ
loc ¼RðeÞf

ðeÞ
glo ¼RðeÞ K

ðeÞ
glod
ðeÞ
glo

� �
; ð12Þ

where K
ðeÞ
glo is the stiffness element matrix in the global coordinate system.
4. Numerical modelling of junction coupling

In the modelling of junction coupling, where the steady state flow velocity is changing, the hydraulic and structural

boundary conditions must be adapted as follows.

4.1. Hydraulic boundary conditions

The major aspect of this research is to derive appropriate relations for an unrestrained valve, a multi-branch and a

pump, to be used as boundary conditions for the hydraulic equations.
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4.1.1. Valve placed at the end of a pipe

Assuming an unfixed valve at the end of a pipe which is being closed gradually; then, the following equation can be

written using the continuity and energy equation for that discrete point:

Qnþ1
i ¼

Q0tffiffiffiffiffiffiffiffiffiffiffiffi
H0;val

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hnþ1

i �Zval

q
þ _x

nþ1

i Af ; H0;val ¼
P0

g
9
valve
¼H09valve�Zval; ð13Þ

in which Zval is the elevation of the valve node and the quantities H0,val and t are the pressure head and the temporary

opening ratio of the valve, respectively. Simultaneous solution of Eqs. (13) and (7, Cþ) for obtaining Qnþ1
i and Hnþ1

i will

give

Qnþ1
i ¼ _x

nþ1

i Af�
t2Q2

0 Bp

2H0;val
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2Q2

0 Bp

2H0;val

� 	2

þ
t2Q2

0ðCp�ZvalÞ

2H0;val
�
t2Q2

0
_x

nþ1

i Af Bp

H0;val

s
; ð14Þ

where _x
nþ1

i is the axial velocity of the valve node. Taking _x
nþ1

i ¼ 0 in Eq. (14) will give the condition of a restrained

valve, and if it is imposed that t=0 the boundary condition will be that of instantaneous valve closure.

4.1.2. Junction

Fig. 1 shows a free-to-move junction J which, due to unsteady flow, has an oscillating velocity along the X direction

of the global coordinate system which is denoted by D _X J . This quantity is computed by the structural subprogram for

the piping system. For the boundary conditions representing an unfixed junction, it is necessary to obtain the velocity of

the node J in the direction of each pipe element connected to it; see Fig. 1. This is done in a structural subprogram using

the transform matrices, R
(e), which are derived for each element connected to the junction. The results are

_x1; _x2; _x3; _x4, where the subscripts indicate the element numbers. Using these quantities, the modified fluid continuity

equation can be written for the junction. Finally, the simultaneous solution of this continuity equation and the

appropriate Cþ and C� relations (7) in the adjacent pipes will give the following equation:

HJ ¼
ðCp1=Bp1Þ þ ðCp2=Bp2Þ þ ðCm3=Bm3Þ þ ðCm4=Bm4Þ�St

ð1=Bp1Þ þ ð1=Bp2Þ þ ð1=Bm3Þ þ ð1=Bm4Þ
;

St¼Af 1
_x1 þ Af 2

_x2�Af3
_x3�Af 4

_x4: ð15Þ

This equation can be extended for any desired number of inlet and outlet pipes connected to the junction:

HJ ¼

PNin

i ¼ 1ðCpi=BpiÞ þ
PNout

i ¼ 1ðCmi=BmiÞ�StPNin

i ¼ 1ð1=BpiÞ þ
PNout

i ¼ 1ð1=BmiÞ
; St¼

XNin

i ¼ 1

Af i

_xi|fflfflfflfflffl{zfflfflfflfflffl}
in

�
XNout

i ¼ 1

Af i

_xi|fflfflfflfflffl{zfflfflfflfflffl}
out

; ð16Þ

in which Nin and Nout are the number of the inlet and outlet pipes, respectively. Now, like a fixed junction, after

calculating Hnþ1
J in the specific time iteration, the discharges corresponding to each pipe are governed by the Cþ and

C� equations. It is noted that a closed end, a mitre bend and a T-section are special forms of the generic junction.

4.1.3. Pump

Fig. 2 shows a pump with its control valve. Pump control valves operate such that the closure ratio template of the

valve (i.e. a butterfly valve disc) is unaffected by the flow or pressure in the line. So, a prescribed time history of valve

opening ratio, t, can be defined. Considering Fig. 2 for handling a pump failure, the equations of Cþ and C� can be

written for the points 1 and 3, respectively. Also, there is a relation for the pump between points 1 and 2 and a relation
ΔXJ

1

2

4

3

1

2

4

3

1

3 2

4

Fig. 1. An unrestrained multi-branch.
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Fig. 2. Pump and its control valve represented as node i.
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across the valve between points 2 and 3 (Wylie et al., 1993). To obtain the unknowns, including the heads in points 1, 2,

3 and the discharge, all the mentioned relations can be combined to achieve the following nonlinear equations (17) and

(19), with the unknowns a and u to be solved with the Newton–Raphson numerical procedure (see Appendix A):

Cp�Cm�BpQp�BmQv þHR a2 þ u2p
� �

ðA0 þ A1xÞ�
uv9uv9DH0

t2
¼ 0;

uv ¼
Qv� _xvAf

QR
; up ¼

Qp� _xpAf

QR

; a¼
N

NR

; ð17Þ

in which A0, A1 and x are quantities representing the pump characteristics and given by the pump curve and DH0 is the

head loss across the valve due to steady flow. N, Qp and Qv are rotational speed and discharges of pump and valve,

respectively. The subscript R indicates rated quantities. In the above equation, for simplicity, assume that up=uv=u.
This means that the pump and valve are considered to be connected firmly to each other, with no possibility to change

the distance between them. So,

up ¼ uv ¼ u; _xp ¼
_xv ¼

_x-Qp ¼Qv ¼Q¼ uQR þ
_xAf : ð18Þ

With the assumption described in relation (18), another equation which is related to the change of rotational speed of

pump is (see Appendix B)

ða2 þ u2Þ B0 þ B1x½ � þ b0�CT ða0�aÞ ¼ 0; CT ¼ Ipump
NR

TR

p
30Dt

; b0 ¼
T0

TR

; x¼ pþ tan�1
u
a
; ð19Þ

where B0 and B1 are quantities similar to A0 and A1 and T and Ipump are the shaft torque and the inertia of the pump

impeller. The zero subscripts on the a, b and T refer to values at the earlier time step.

4.2. Structural boundary conditions

In the piping system simulated as a structural frame, fluid pressure multiplied by flow area acts as a concentrated load

on a frame junction. It is clear that, where the junction is blocked, displacement is zero and this brings about a direct

transmission of the fluid forces to the supports or anchors. Where the junction is free to move, in the simulation, the

concentrated loads of the fluid should be entered in the force vector in the position where the related displacements

occur. Similarly, forces acting on the pump and its valve during power failure can be evaluated using calculated heads in

the nodes 1 and 3, see Fig. 2.

4.3. Column separation

Column separation occurs when the pressure drops to vapour pressure. For simulating this phenomenon numerically,

the pressure head was held equal to vapour pressure, and the equations of Cþ and C� are utilized to calculate discharges

at either side of the cavity volume. This volume can be calculated using the following integration scheme for the MOC

with staggered grid for the conditions of junction coupling (Tijsseling, 1993):

8nþ1 ¼8n�1 þ 2Dt fc½ðQnþ1
2 �

_x
nþ1

2 Af Þ�ðQ
nþ1
1 �

_x
nþ1

1 Af Þ� þ ð1�cÞ½ðQn�1
2 �

_x
n�1

2 Af Þ�ðQ
n�1
1 �

_x
n�1

1 Af Þ�g; ð20Þ

where the subscripts 1 and 2 refer to the discharges upstream and downstream of the cavity volume 8, and c is a

weighting factor. The described method called DVCM was employed in this research because of its easy implementation

and fast computing (Bergant and Simpson, 1999; Bergant et al., 2006). Eq. (20) is a general equation for junctions,

bends or other movable pieces in a piping system. For closed ends and check valves, one of the discharges Q1 or Q2
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should be considered zero. In the case of a pump as a discrete point, various scenarios might take place, e.g. the

occurrence of vapour pressure on either side of the pump or on both sides. This case was studied as a separate research

on the column separation phenomenon by Keramat et al. (2009).
5. Validation

A computer program using MATLAB software has been developed and all equations presented in this article have

been investigated with it. To examine the validity of the described model, the results of two cases presented in Tijsseling

(2003), Tijsseling (1993) and Heinsbroek (1997) were compared with those of the present model. The details of this

comparison are set out in the next sections.

It is worth noting that the detailed FSI experiments by Fan and Tijsseling (1992), Tijsseling et al. (1996) and Vardy et al.

(1996) concern freely suspended pipes with closed ends that are excited by impact loads. Any uncertainties associated with

pipe supports, reservoir–pipe connections, valve closure behaviour, dynamic pump characteristics and dissolved and free air

are absent in these experiments. However, these complications occur in all practical pipe systems. Separate investigations of

the above-mentioned uncertainties in FSI models are therefore needed. In addition, unsteady friction should be investigated

in combination with FSI if damping effects are an issue. If such investigations have been carried out successfully, in the near

future FSI in practical piping systems can be predicted with an acceptable level of accuracy.

5.1. Benchmark 1

The specifications of a reservoir–pipe–valve system known as Delft Hydraulics Benchmark Problem A are given in

Table 1 (Tijsseling, 2003). It was used to test the numerical method and the present software. This model has been

solved to investigate junction coupling. For this aim, the valve was considered to be free to move. In Fig. 3 the results

obtained for pressure head at valve and midpoint were validated against the exact solution of Tijsseling (2003) who

provided the authors with his results. The reason of the dissimilarities which are merely in the discontinuities is due to

the fact that basically the finite element method cannot capture sufficiently well the instantaneous variations.
Table 1

The properties of the pipeline according to the case study in Tijsseling (2003).

Length Diameter Thickness Pipe

density

Young’s

modulus

Poisson

ratio

Wave

velocity

Steady

state

velocity

Reservoir

head

20 m 797 mm 8 mm 7900 kg/m3 2.1� 1011 Pa 0.0 1024.7 m/s 1 m/s 0 m
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Fig. 3. Pressure head comparison of present and exact (Tijsseling, 2003) solution in continuous and broken lines, respectively.
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5.2. Benchmark 2

In Fig. 4, the system to be analysed is sketched (Tijsseling, 1993; Heinsbroek, 1997) and the numbers of nodes are

shown. In this model called Delft Hydraulics Benchmark Problem D, the pipes and elbow are allowed to move freely in

the horizontal (Y–Z) plane and the valve is rigidly fixed to the ground. The long and short pipes are 310 and 20 m long,

respectively. The valve closure time is 0.5 s. The other specifications are listed in Table 2. Accordingly, the computed

pressure wave speed is 1192 m/s.

In Figs. 5 and 6 the computed time histories of the analyses without coupling, with junction coupling and with

Poisson and junction coupling, for two dynamic displacement components at the elbow are compared with those of
2
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1

Fig. 4. Pipeline system in benchmark 2.

Table 2

The properties of the pipeline according to the case study in Heinsbroek (1997).

Diameter Thickness Pipe density Fluid

density

Young’s

modulus

Bulk

modulus

Poisson

ratio

Steady state

discharge

Friction

coefficient

Reservoir

pressure head

206.4 mm 6.35 mm 7900 kg/m3 880 kg/m3 2.1� 1011 Pa 1.55� 109 Pa 0.3 0.1338 m3/s 0.02 26.23 m
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Fig. 5. Comparison of Z-displacement at the elbow, results of FLUSTRIN to the left (provided by Dr. Tijsseling) and results of

present study to the right.
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FLUSTRIN, a verified code provided by Delft Hydraulics Laboratory. As seen, both results show very good agreement

with each other.
6. Case studies

Three model problems were considered to be solved for the investigation of junction coupling at valve, branch and

pump. The first model was presented to illustrate FSI for gradual valve closure. The second model was introduced to

investigate the junction coupling effects of branches, and the third one was given to scrutinize the junction coupling in a

system including a failing pump.
6.1. Case study 1

Junction coupling effects of benchmark 1 with now a steady pressure head of 50 m, was scrutinized for the case of

gradual valve closure. The valve was closed in 0.03 s and in 0.05 s, and for simplicity, t was considered as a linear

function of time in Eqs. (13) and (14). Fig. 7(a–d) compares the results for gradual closure of the valve with those of

instant closure.

Fig. 7(a) shows that in the case of rapid closure and not considering the FSI, the maximum pressure rise is the same

for both instant and gradual closure. In fact, when the closure time is less than 2l/a (where l is the pipe length and a is

the pressure wave speed), the time of valve closure, tc, has no effect on the maximum pressure rise. This fact is also true

for the junction coupling case as shown in Fig. 7(b), but in the junction coupling case, the 2l/a criterion can be different

depending upon the variation of fundamental frequency, which in turn depends on the rigidity of the piping system.

The support rigidity of piping systems has been investigated by Heinsbroek and Tijsseling (1994), and it is also further

investigated in the second case study of this research. In the case of slow valve closure for both cases: with and without

FSI, the maximum pressure rise is smaller than in the corresponding cases for instant valve closure; see Fig. 7(c) and (d).

Therefore, one difference between the calculations with and without FSI for gradual valve closure is the criterion of

2l/a which, as argued, may differ due to junction coupling.

Fig. 8 shows the variation of pressure head in the middle of the pipeline for the condition of junction coupling in the

case of rapid and slow valve closures. It confirms the fact that the fundamental frequency changes because of junction

coupling, which changes the 2l/a criterion of distinguishing between rapid and slow valve closure slightly. This also

could be understood by comparing Fig. 7(c) and (d).
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Fig. 7. Comparison of heads at valve due to rapid and slow valve closure under the conditions of no-FSI and of junction coupling;

broken lines are for instantaneous valve closure.
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6.2. Case study 2

In this model problem the first aim was to illustrate the effects of junction coupling due to water hammer occurring in

a branched system excited by valve closure. The system consists of a reservoir establishing the flow in a main pipeline

which via a branch is linked to two other pipelines, one ending with a consumer and the other ending with a valve.

The specifications of the piping system are given in Table 3 and the number of elements and the length of each one in the



Table 3

The properties of the piping system depicted in Fig. 9.

Discharge of

main pipe

Discharge of

branches

Diameter of

all pipes

Thickness of

all pipes

Pipe density Young’s

modulus

Wave velocity Reservoir

pressure head

0.020 m3/s 0.010 m3/s 200 mm 8 mm 8000 kg/m3 2.1� 1011 Pa 1271 m/s 50 m

80×1.271m

40×1.271m

30×1.271m

100×1.271m

Consumer

Reservoir

Valve 

Y

Z

Fig. 9. The geometrical properties of the piping system in case study 2. For each pipe, the number of elements in the simulation and the

length of each one are indicated.
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Fig. 10. Comparison of heads for two different durations of valve closure under the conditions of no-FSI and of junction coupling;

broken lines are for instantaneous closure.
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numerical analysis are depicted in Fig. 9. For modelling only junction coupling, the Poisson ratio of all pipes is set equal

to zero, and under this circumstance, branch and valve are allowed to move and other connections including the

reservoir, consumer and bend are assumed to be restrained.

In an attempt to study the effects of valve closure, the piping system was solved for two different closure times and

the results are shown in Fig. 10; broken lines are for instantaneous valve closure. From the results it can be seen that in

a branched system, the time for the wave to travel to and fro, between valve and the nearest (reflection) point releasing

the high pressure, is the time of establishment of high pressure produced by valve closure, which in this case is

2� (130� 1.271/1271)=0.26 s. This in fact provides a criterion for valve closure for this model. It can be concluded

that, if the valve closure time takes less than this criterion, the system will experience the high pressure (full Joukowsky)

even for a very short time (Fig. 10(a) and (b)), otherwise the lower pressure of the reflected wave will reach the valve,

and the high pressure will never occur (Fig. 10(c) and (d)). The other comparison between the results with and without

junction coupling provided in Fig. 10 leads to the conclusion that valve gradual closure would cause a kind of damping

effect on junction coupling so that, for closures with more delay, the results for junction coupling included and

not-included are approximately alike. Taking notice of the existence of a consumer in this case study, pressure

reductions with time, seen in all of the results, could be inferred.

The second aim was to investigate the influence of the rigidity of piping system on junction coupling. Rigidity relates

to structural parameters of the system, such as pipe wall thickness, modulus of elasticity and the stiffness of supports.

To illustrate the effects of rigidity, two different values for the support stiffness of branch and valve and modulus of

elasticity were taken into account and the results are shown in Fig. 11(a) and (b). Support rigidities were modelled by

two different springs with stiffnesses kY=kZ=k1=0 N/m and kY=kZ=k2=107 N/m placed at the branch and valve

(Fig. 9).

From the results, it can clearly be understood that the number of rises and drops due to junction coupling varies with

pipe modulus of elasticity, as in the initial time interval of 0.26 s, the number of rises and drops are around five for

E=2.1� 1011 Pa and four for E=1.1� 1011 Pa. This is as a consequence of a higher stress wave speed in a more rigid

material. Turning to the influence of support stiffness on junction coupling, the story is different. It results in the sloping

pressure ascents or descents instead of the drastic ones revealed for systems including freely moving discrete points.

To describe junction coupling for this problem, it should be noted that, after the instantaneous valve closure, water

hammer results in a pressure rise that pushes the valve forward, so the increase in pressure will initially be smaller than

that of classical water hammer. The structural wave originating from the pushed valve will travel to the bend and back

to the valve; this movement lasts around 0.05 s for the piping system of Fig. 11(a) and around 0.07 s for the system of

Fig. 11(b). The returned wave pulls the valve back and decreases the storage capacity for fluid at the valve and

establishes higher pressure than classical water hammer.

Basically, changes in fluid velocity cause the water hammer event which in turn can result in raising the pressure and

deforming the shape of the structure of the pipe system. The amount of initial pressure rise or distortion depends on the
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rigidity of the structure. In soft systems, the water hammer event can bring about larger deformations and smaller initial

pressure rises as compared with rigid systems.

6.3. Case study 3

In an attempt to investigate the effects of junction coupling due to water hammer caused by a pump failure, a pipeline

as shown in Fig. 12 was considered. The specifications of this model are given in Table 4. As discussed in Section 4.1.3,

the pump and its control valve, referred to as the pump, cannot move relative to each other. A fifth-order polynomial

pattern was considered for valve closure within 7 s.

When the pump works at steady state, it develops a total dynamic head increase of 73.2 m from suction flange to

discharge flange and establishes the flow of 0.221 m3/s. Pump failure causes water hammer events at downstream and

upstream sides of pump which are examined in Figs. 13 and 14, respectively. As shown, it generates rarefaction waves to

be transmitted downstream and pressure waves to be transmitted upstream. These two waves interact, depending on the

length of inlet and outlet pipes, before the full closure of the valve. The first interaction can be recognized by a

discontinuity in slope as seen in Fig. 13(a) at about t=1 s. As time progresses, due to the reactive torque of the liquid

on the impeller, its rotational speed will decline, which in turn results in the same pressures at either side of pump

(compare Figs. 13(a) and 14(a)) and at the same time, discharge tends to reduce. Ideally, the control valve should be

closed when the fluid velocity is zero or back flow is going to be initiated, because under these circumstances no water

hammer is generated due to valve closure and the only existing water hammer is due to the reflected waves of pump

failure. However, in practical cases it is recommended that the control valve should be closed 3–5 times slower than the

critical period 2l/a to minimize the surge, and it also should not be closed so slowly that back flow occurs. In this

example, the control valve fully closes a bit before fluid velocity becomes zero, thus it causes instantaneous head drop

shown in Fig. 13(a) and rise in Fig. 14(a) at t=7 s. If the valve closes just when the fluid velocity is zero, all the

instantaneous jumps are eliminated from the solutions.

Taking notice to solutions with only junction coupling of the pump presented in Figs. 13(b) and 14(b) leads to the fact

that it cannot be significant before full closure of the valve, because it is analogous to junction coupling of a valve with

gradual closure (case study 1); which, as shown, it was not very different from classical water hammer results. But

following the valve full closure, a significant water hammer occurs at either side of the valve, which causes the pressure

drop at the downstream side of the valve and the pressure rise at the upstream side (provided that back flow does not

occur). These combined pressure drops and rises exert extreme hydraulic forces on the pump system because of their

opposite values and leads to pump movements and pressure fluctuations as seen in Figs. 13(b) and 14(b). A slight

change in the main frequency due to junction coupling reported in the literature (Heinsbroek and Tijsseling, 1994) can

also be confirmed in this example. In general, the intensity of junction coupling arising from pump failure increases by

the occurrence of higher pressure change at the pump (difference between pressure rise and drop at either side of the

pump). The results of not considering junction coupling and column separation in Figs. 13(a) and 14(a) are drawn as a

broken curve in the other related graphs.

In terms of column separation, Figs. 13(c) and 14(c), it is worthwhile to mention that, having transmitted the low

pressure wave, cavity bubbles are generated by the pressure reaching vapour pressure at some points along the suction

or discharge lines. In this example, according to its specific profile, the cavity will never take place at the points near the

pump before the valve full closes. Therefore, small changes in maximum and minimum pressures at the pump are due to

cavity volumes along the pipelines, and not at the pump.

Figs. 13(d) and 14(d) show the results for considering both junction coupling and column separation. To make a

review on these, fluctuations and changes in maximum and minimum pressures due to column separation and small

pressure spikes and changes in the frequency due to junction coupling are partially combined to produce them.

Fig. 15 demonstrates the displacements and support reactions at the pump for two different support rigidities. Only junction

coupling and no column separation were involved here. The small oscillations in these graphs before the valve fully closes which
ValvePump
flow

500 m
1000 m

Reservoir

Reservoir

EL=5m

EL=50m

Fig. 12. The geometry of the pipeline in case study 3.



Table 4

The properties of the piping system shown in Fig. 12.

NR TR HR QR Ipump Pump

elevation

Pump support

stiffness

Valve

loss coef.

Downstream

res. head

Upstream res.

head

1760 rpm 991.6 N m 94.55 m 0.1787 m3/s 7.9 kg m2 0 m 0 N/m 0.3 60 m 10 m

Downstream

reservoir elevation

Upstream

reservoir

elevation

Wave

velocity

Darcy–Weisbach

friction coefficient

Young’s

modulus

Pipe

density

Thickness Diameter

50 m 5 m 1098 m/s 0.01 2.1� 1011 Pa 8000 kg/m3 10 mm 305 mm
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Fig. 13. Head at the downstream side of pump: (a) without junction coupling (JC) and without column separation (CS); (b) with JC

and without CS; (c) without JC and with CS; (d) with JC and with CS.
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become larger after full closure, are associated with junction coupling. They tend to be diminished with a larger value for

support stiffness, as shown. Considering Fig. 15(b) and comparing the rigidities used for the pump support shows that the

water hammer effects due to valve closure can be reduced using an adjustable support, operating similar to a spring, for the

pump and its control valve.
7. Conclusions

The major goal of this paper was to perform an extensive research on the concept of junction coupling and to scrutinize

it for conditions of gradual valve closure in branched systems with different rigidities and systems including a pump.

A MOC–FEM procedure was used as numerical solution since hydraulic and structural equations were solved separately

in each time step; this in fact has the advantage of easily implementing all available developments on water hammer such

as cavitation, unsteady friction, blockage, leakage and viscoelastic behaviour of pipe wall material, in conjunction with

junction coupling. Poisson coupling was not considered herein. The results of this research can be used to assist engineers

in finding an overall perspective about junction coupling effects. The following conclusions may be drawn.
1.
 Junction coupling can cause the establishment of pressures a bit higher than the pressures predicted by classical

water hammer, so coupled analyses should be made for more sensitive systems.
2.
 In most cases of branched piping systems, the time it takes for the pressure wave to travel to the branch and back to the

valve can be considered as a criterion for rapid or slow closure instead of the 2l/a time scale for reservoir–pipe–valve

systems. Also due to junction coupling, this criterion may be altered because of changes in the fundamental frequency

of water hammer.
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Fig. 14. Head at the upstream side of pump: (a) without junction coupling (JC) and without column separation (CS); (b) with JC and

without CS; (c) without JC and with CS; (d) with JC and with CS.
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3.
 Junction coupling is highly dependent on the rigidity of the pipe system. In quite rigid systems, junction coupling

does not happen, whereas in very soft systems water hammer results in significant deformation of the piping system

and in most such cases, the pressure rises will be small.
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4.
 Interaction of the fluid and structure at the pump location arising from pump failure is mainly contributed to by the

operation of the control valve, because of the opposite pressures produced at either side of it. It can be limited by a

suitable selection of its closure time.
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Appendix A. Derivation of Eq. (17)

To do a transient analysis for a system including a pump, it is necessary to have the pump characteristics for a

particular rotational speed. Then, homologous relations are used to find the characteristic curves at different speeds.

As homologous equations are difficult to handle directly, first, four nondimensional quantities are defined as

h¼
H

HR

; b¼
T

TR

; up ¼
Qp� _xpAf

QR

; a¼
N

NR

; ðA1Þ

in which _xp is the axial velocity of pump vibration along the pipeline and up=u according to relation (18); then, the

pump characteristics are plotted in terms of tan�1(u/a) versus h/(u2þa2) or b/(u2þa2), giving the head or torque.

Subsequently, using a linear extrapolation for previous calculations of a and u, the following relation is written to

represent the characteristic pump head according to its germane curve:

h

a2 þ u2
¼A0 þ A1x; x¼ pþ tan�1

u
a

� �
; ðA2Þ

where A0 and A1 are constants which for the first try of the current time step are obtained by the assumed straight line

defined through the two adjoining data points of u and a of the previous time step (Wylie et al., 1993).

For handling the pump failure, considering Fig. 2, except for equations Cþ and C�, there is relation (A3) for the

pump between points 1 and 2, as well as (A4) across the valve between points 2 and 3:

H1 þ hHR ¼H2; ðA3Þ

H2�
ðQv� _xvAf Þ9Qv� _xvAf 9DH0

t2Q2
0

¼H3 ðA4Þ

with the head loss across the valve equal to DH0 when the flow is Q0 and t=1. Here again _xv is the velocity of valve

vibration along the pipeline. With replacing for h from (A2) in (A3) and calculation using relations Cþ and C� for

H1 and H3 in Eqs. (A3) and (A4), respectively, and removing H2 between them, Eq. (17) is obtained.
Appendix B. Derivation of Eq. (19)

There is a differential equation for the pump joining the applied torque to the angular velocity:

T ¼�Ipump
do
dt
; o¼

2pN

60
: ðB1Þ

The above relation has to be integrated numerically because the applied torque, T, is affected by the flow discharge

and is a function of time. If integrated using the trapezoidal rule form time t0 to t1, the result is

1

2
Tðt0Þ þ Tðt1Þ½ �ðt1�t0Þ ¼�Ipump

2p
60

Nðt1Þ�Nðt0Þ½ �: ðB2Þ

When written using nondimensional quantities, and working with a staggered grid and using the zero-index to

represent the values at the previous time step, the following equation:

bþ b0�
pNRIpump

30TRDt
ða0�aÞ ¼ 0 ðB3Þ
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is obtained. And again, like Eq. (A2), there is a relation to represent the torque using a linear extrapolation:

b
a2 þ u2

¼B0 þ B1x; x¼ pþ tan�1
u
a

� �
: ðB4Þ

Substitution for b from (B4) into (B3) results in Eq. (19) (Wylie et al., 1993).
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